標準法の改築にあたり柔軟な運転 方法に対応した反応槽設計事例

株式会社 日建技術コンサルタント 水処理施設部 筒井 大紀

標準活性汚泥法の改築にあたり

- 全槽好気運転(「OOOO運転」)
- 嫌気好気運転(「AOOO運転」)
- ■ステップ流入2段運転(「AOAO運転」) など複数の運転方法を想定した槽割りの設計

に対し、既設反応槽隔壁を利用した性能の検証 を行った。

反応タンクの運転状況

- 対象の系列は、処理能力の60%の流入水量で全 池運転し、運転方法は前半部の空気量を制限し た擬似嫌気好気法及び、空気量を増加させ硝化 促進運転を行っている。
- 現状運転ではBOD、SSに関して良好な処理水質を維持している。またアンモニア性窒素に関しても概ね20mg/L程度の流入に対し0.3mg/L程度の放流で処理性能は良好である。

既設反応槽槽割りの課題

■ 「標準活性汚泥法設計指針(案)」(JS・平成7年)では、標準法の反応タンクについて、隔壁による4分割を基本とした、「OOOO運転」、「AOOO運転」、

「AOAO運転」など複数の運転方法を想定し、第1槽~

第4槽の容量比を「1:1.5:1.5:2.25(JS標準型)」

と設定しているが、

本浄化センターの反応 槽槽割りは 1:1:1:1:1

の5分割となっている。

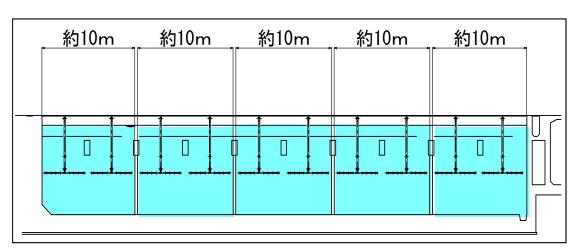
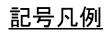


図-1 更新反応タンク槽割図

既設反応槽槽割りの課題

- 将来流入水量が増加し処理能力に近づくと、硝化 が不完全となり処理水質の悪化を招くことも懸念 される。
- 運転方法を柔軟できるよう設計することが望ましいため、既設槽での反応タンク性能を確認し、処理効果の評価を行うこととした。


表-1 反応タンク槽割概要

衣-1 及心タノク僧 刮燃安					
	JS標準型	既設等分割型			
運転方法	1 0000	1 00000			
	2 AOOO	② 疑似AOOOO			
	3 AOAO				
各槽容量比	1:1.5:1.5:2.25	1:1:1:1:1			
備考	夏:硝化促進	風量を上げての硝化促進			
	冬:バルキング対策				

JS標準型の概要

- ■「AOAO運転」は、高水温期などで硝化反応 が不可避的に進行することを前提とした運転 方法
- ■標準法においても脱窒工程を組込むことを想 定している。

Q:総流入水量 V:総タンク容量

X₁ :1段目MLSS

X₂ :2段目MLSS

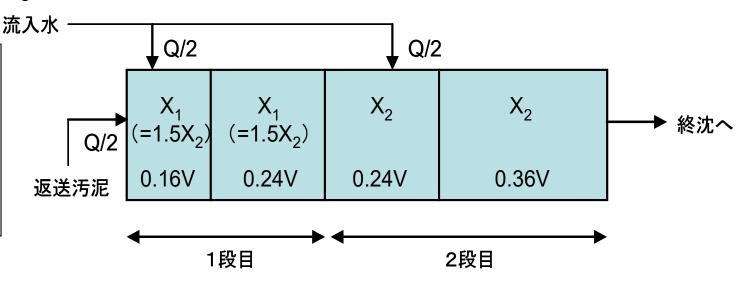


図-2 JS標準型槽分割概要図

槽分割の検討方針

- ①ステップ流入による効果
 - ⇒ MLSSの高濃度化

- ・ステップ流入を行なうことで、最終沈殿池への MLSS濃度を変えずに、反応タンク全体のMLSS 保持量を高めることができるためJS標準型では ステップ流入を前提としている。
 - ここでは、総MLSS量の試算により、JS標準型 同様の効果を有しているかを確認する。

槽分割の検討方針

- ②1段目と2段目の容量比(1:1.5)による効果 ⇒ 負荷の均一化
 - ・JS標準型槽分割の最大のポイントは、ステップ 流入により生じる前段と後段のMLSS濃度の違いに対して、各段に保持されるMLSS「量」が 等しくなるよう、容量比を設定することにある。 ここでは、1段目と2段目の容量比による、負荷 均一化の効果を確認する。

槽分割の検討方針

- ③1~4槽の容量比(1:1.5:1.5:2.25)による効果
 - ⇒ ASRTの確保

- ・標準活性汚泥法では、有機物除去や硝化などの主要な処理機能がASRT(好気的固形物滞留時間)に依存し、一般にASRTを長く確保できる方が高い処理機能を期待できる。
 - ここでは、無酸素槽と好気槽の容量比により、JS標準型と同等の効果を有しているかの確認を行う。

表-2 流入方式・槽分割方式の比較表

ケース		【ケース A】既設利用	【ケース B】既設利用型	[ケース C]
		(ステップ流入無し)	(2段ステップ流入)	JS 標準型(2段ステップ流入)
反応タンクフロー				
 ※記号凡例 Q:総流入水量 V:総タンク容量 X₁: 1段目 MLSS 濃度 X₂:末端 MLSS 濃度 		流入水 MLSS:2000mg/L A A A A A A A A A A A A A A A A A A A	流入水	流入水
ステップ流入比(1段目:2	2段目)	無し	1:1	1:1
污泥返送比(対総流入水量)		0.5	0.5	0. 5
槽容量比(括弧内は、全体容) た場合の各槽容量の比率)	量を1とし	1 : 1 : 1 : 2 (0. 20 : 0. 20 : 0. 20 : 0. 40)	1 : 1 : 1 : 2 (0. 20 : 0. 20 : 0. 20 : 0. 40)	1 : 1. 5 : 1. 5 : 2. 25 (0. 16 : 0. 24 : 0. 24 : 0. 36)
MLSS 濃度比(1段目:2段目	∄)	_	1.5:1	1.5:1
総 MLSS 量(対ケース A)		1.00	1. 20	1. 20
好気槽 MLSS 量 (対ケース A) ※全ケースについて AOAO 運		1.00	1. 17	1. 20
MLSS 当り流入負荷量	1段目	1.00	0. 83	0.83
(対ケース A)	2段目	1.00	0. 83	0. 83

検証内容

- ①ステップ流入による効果
 - 槽分割(ケースC)では、ステップ流入を行なわない場合(ケースA)と比べて、反応タンク全体の保持汚泥量が20%増加する。このことは、反応タンクの生物処理能力が20%増加することを意味する。

(ケースB) も (ケースC) と同様、1段目と 2段目の容量比が、結果的に1:1.5となってい るため、同様の効果が見込まれる。

検証内容

- ②1段目と2段目の容量比 (1:1.5) による効果
 - ・JS標準型槽分割(ケースC)では、ケースAと比較して各段の負荷量が83%へと低減されているが、これは直接的に処理能力の余裕と見なすことができる(その分、処理水量を増やすか、MLSS濃度を低下させることができる)。

<u>(ケースB) も (ケースC) と同様、1段目と2</u> <u>段目の容量比が、結果的に1:1.5となっている</u> ため、同様の効果が見込まれる。

検証内容

- ③1~4槽の容量比 (1:1.5:1.5:2.25) による効果
 - JS標準型の槽分割(ケースC)では、ケースAと 比較して好気槽MLSS量が1.20倍まで増加する。 これは、ステップ流入の効果に加えて、無酸素/ 好気容量比を1:1.5と設定したことによる。 (ケースB)では、1.17倍とわずかに(ケース C)を下回るが、流入水量および反応タンク容量 に対して長いASRTを確保できるため、有機物除 去および硝化に関して、相対的に高い処理機能を 期待することが可能である。

検証結果

- ・既設隔壁利用の5槽均等割(ケースB)は、① 「MLSSの高濃度化」、②「負荷の均一化」、
 - ③「ASRTの確保」のいづれも項目においても、「JS標準型」(ケースC)と性能面で同等の効果があることが確認できた。

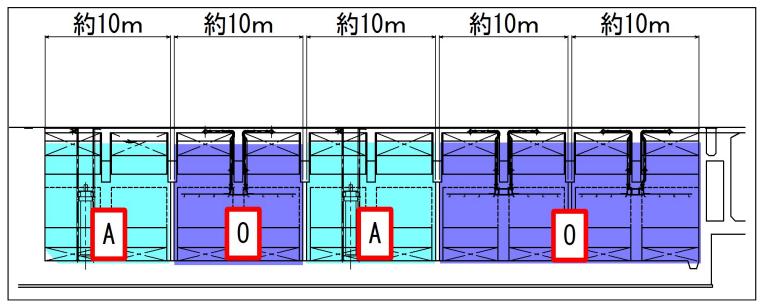


図-3 更新反応タンク槽割図

おわりに

■ 既設隔壁利用による槽割りにおいても、様々な 運転方法に対応できることが確認できた。この ように、反応タンク改築においては、既設の槽 分割が様々な場合があるが、安易に隔壁の打ち 直しではなく、処理の効果を確認し、既存施設 をどう生かせるかを検討することが重要である。 これにより他業務における同様のケースでも、 工事費の削減・工期の短縮等のメリットにつな がるものと考える。